Контрольные задания > 2. Постройте в одной системе координат графики функций:
\[ y = x - 4, \quad y = -2x - 4, \quad y = -4 \]
Ответьте на вопросы:
1) В какой точке каждый график пересекает ось y, ось x;
2) Каково взаимное расположение графиков данных функций?
Вопрос:
2. Постройте в одной системе координат графики функций:
\[ y = x - 4, \quad y = -2x - 4, \quad y = -4 \]
Ответьте на вопросы:
1) В какой точке каждый график пересекает ось y, ось x;
2) Каково взаимное расположение графиков данных функций?
Ответ:
2. Рассмотрим каждую функцию:
1) Точки пересечения с осями:
- Для \(y = x - 4\):
- Пересечение с осью y: \(x = 0\), \(y = 0 - 4 = -4\). Точка: \((0, -4)\)
- Пересечение с осью x: \(y = 0\), \(0 = x - 4\), \(x = 4\). Точка: \((4, 0)\)
- Для \(y = -2x - 4\):
- Пересечение с осью y: \(x = 0\), \(y = -2(0) - 4 = -4\). Точка: \((0, -4)\)
- Пересечение с осью x: \(y = 0\), \(0 = -2x - 4\), \(x = -2\). Точка: \((-2, 0)\)
- Для \(y = -4\):
- Это горизонтальная прямая, пересекающая ось y в точке \((0, -4)\).
- Не пересекает ось x (параллельна ей).
2) Взаимное расположение графиков:
- \(y = x - 4\) - прямая с угловым коэффициентом 1.
- \(y = -2x - 4\) - прямая с угловым коэффициентом -2.
- \(y = -4\) - горизонтальная прямая.
Первые две прямые пересекаются, так как у них разные угловые коэффициенты. Все три прямые пересекаются в точке (0, -4).