$$\frac{2a+b}{2a^2-ab} - \frac{16a}{4a^2-b^2} - \frac{2a-b}{2a^2+ab} = \frac{2a+b}{a(2a-b)} - \frac{16a}{(2a-b)(2a+b)} - \frac{2a-b}{a(2a+b)} = \frac{(2a+b)^2 - 16a^2 - (2a-b)^2}{a(2a-b)(2a+b)} = \frac{4a^2+4ab+b^2 - 16a^2 - (4a^2-4ab+b^2)}{a(2a-b)(2a+b)} = \frac{4a^2+4ab+b^2 - 16a^2 - 4a^2+4ab-b^2}{a(2a-b)(2a+b)} = \frac{-16a^2+8ab}{a(2a-b)(2a+b)} = \frac{8a(-2a+b)}{a(2a-b)(2a+b)} = \frac{-8a(2a-b)}{a(2a-b)(2a+b)} = \frac{-8}{2a+b}$$
Ответ:$$\frac{-8}{2a+b}$$