- a) \(\frac{15}{27}\) и \(\frac{24}{42}\).
- Сократим дробь \(\frac{15}{27}\) на 3: \(\frac{15}{27} = \frac{15 \div 3}{27 \div 3} = \frac{5}{9}\).
- Сократим дробь \(\frac{24}{42}\) на 6: \(\frac{24}{42} = \frac{24 \div 6}{42 \div 6} = \frac{4}{7}\).
- Приведем дроби \(\frac{5}{9}\) и \(\frac{4}{7}\) к наименьшему общему знаменателю. \(9 \cdot 7 = 63\).
$$ \frac{5}{9} = \frac{5 \cdot 7}{9 \cdot 7} = \frac{35}{63} $$
$$ \frac{4}{7} = \frac{4 \cdot 9}{7 \cdot 9} = \frac{36}{63} $$
- б) \(\frac{15}{54}\) и \(\frac{28}{48}\).
- Сократим дробь \(\frac{15}{54}\) на 3: \(\frac{15}{54} = \frac{15 \div 3}{54 \div 3} = \frac{5}{18}\).
- Сократим дробь \(\frac{28}{48}\) на 4: \(\frac{28}{48} = \frac{28 \div 4}{48 \div 4} = \frac{7}{12}\).
- Приведем дроби \(\frac{5}{18}\) и \(\frac{7}{12}\) к наименьшему общему знаменателю.
\(18 = 2 \cdot 3 \cdot 3\); \(12 = 2 \cdot 2 \cdot 3\); НОЗ \(= 2 \cdot 2 \cdot 3 \cdot 3 = 36\).
$$ \frac{5}{18} = \frac{5 \cdot 2}{18 \cdot 2} = \frac{10}{36} $$
$$ \frac{7}{12} = \frac{7 \cdot 3}{12 \cdot 3} = \frac{21}{36} $$
Ответ: а) \(\frac{35}{63}\) и \(\frac{36}{63}\); б) \(\frac{10}{36}\) и \(\frac{21}{36}\).