Вопрос:

9. Произведение двух последовательных натуральных чисел меньше произведения следующих двух последовательных натуральных чисел не более чем на 60. Найдите, какое наибольшее целое значение может принимать меньшее из чисел.

Смотреть решения всех заданий с листа

Ответ:

**Решение:** Пусть n - меньшее из двух последовательных натуральных чисел. Тогда два последовательных числа - это n и n+1, а следующие два - это n+2 и n+3. Запишем условие задачи в виде неравенства: n(n+1) + 60 ≥ (n+2)(n+3) n² + n + 60 ≥ n² + 5n + 6 60 - 6 ≥ 5n - n 54 ≥ 4n n ≤ 54/4 n ≤ 13.5 Так как n должно быть целым числом, то наибольшее целое значение n равно 13. Проверим: 13 * 14 = 182 15 * 16 = 240 240 - 182 = 58 ≤ 60 **Ответ:** 13
ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие