В правильном треугольнике радиус вписанной окружности (r) связан с высотой (h) следующим соотношением: $$r = \frac{1}{3}h$$.
Нам дано, что радиус вписанной окружности равен 9 см. Поэтому, $$9 = \frac{1}{3}h$$.
Чтобы найти высоту, умножим обе части уравнения на 3: $$h = 9 \cdot 3 = 27$$.
Ответ: Высота треугольника равна 27 см.