4. Решите уравнение и сделайте проверку:
а) $$9y^2 - 4 = 0$$
$$9y^2 = 4$$ $$y^2 = \frac{4}{9}$$ $$y = \pm \frac{2}{3}$$Проверка:
$$9(\frac{2}{3})^2 - 4 = 9 \cdot \frac{4}{9} - 4 = 4 - 4 = 0$$ $$9(-\frac{2}{3})^2 - 4 = 9 \cdot \frac{4}{9} - 4 = 4 - 4 = 0$$в) $$1 - 4y^2 = 0$$
$$4y^2 = 1$$ $$y^2 = \frac{1}{4}$$ $$y = \pm \frac{1}{2}$$Проверка:
$$1 - 4(\frac{1}{2})^2 = 1 - 4 \cdot \frac{1}{4} = 1 - 1 = 0$$ $$1 - 4(-\frac{1}{2})^2 = 1 - 4 \cdot \frac{1}{4} = 1 - 1 = 0$$б) $$-y^2 + 5 = 0$$
$$y^2 = 5$$ $$y = \pm \sqrt{5}$$Проверка:
$$-(\sqrt{5})^2 + 5 = -5 + 5 = 0$$ $$-(-\sqrt{5})^2 + 5 = -5 + 5 = 0$$г) $$8y^2 + y = 0$$
$$y(8y + 1) = 0$$ $$y = 0$$ или $$8y + 1 = 0$$ $$y = 0$$ или $$8y = -1$$ $$y = 0$$ или $$y = -\frac{1}{8}$$Проверка:
$$8 \cdot 0^2 + 0 = 0$$ $$8(-\frac{1}{8})^2 + (-\frac{1}{8}) = 8 \cdot \frac{1}{64} - \frac{1}{8} = \frac{1}{8} - \frac{1}{8} = 0$$д) $$6y - y^2 = 0$$
$$y(6 - y) = 0$$ $$y = 0$$ или $$6 - y = 0$$ $$y = 0$$ или $$y = 6$$Проверка:
$$6 \cdot 0 - 0^2 = 0$$ $$6 \cdot 6 - 6^2 = 36 - 36 = 0$$e) $$0,1y^2 - 0,5y = 0$$
$$y(0,1y - 0,5) = 0$$ $$y = 0$$ или $$0,1y - 0,5 = 0$$ $$y = 0$$ или $$0,1y = 0,5$$ $$y = 0$$ или $$y = 5$$Проверка:
$$0,1 \cdot 0^2 - 0,5 \cdot 0 = 0$$ $$0,1 \cdot 5^2 - 0,5 \cdot 5 = 0,1 \cdot 25 - 2,5 = 2,5 - 2,5 = 0$$Ответ: а) y = ±2/3, в) y = ±1/2, б) y = ±√5, г) y = 0 и y = -1/8, д) y = 0 и y = 6, e) y = 0 и y = 5.