664.
1) $$(x - 4)^2 = 4x - 11$$
$$x^2 - 8x + 16 = 4x - 11$$
$$x^2 - 12x + 27 = 0$$
$$D = (-12)^2 - 4 * 1 * 27 = 144 - 108 = 36$$
$$x_1 = \frac{12 + \sqrt{36}}{2} = \frac{12 + 6}{2} = \frac{18}{2} = 9$$
$$x_2 = \frac{12 - \sqrt{36}}{2} = \frac{12 - 6}{2} = \frac{6}{2} = 3$$
2) $$(x + 5)^2 + (x - 7)(x + 7) = 6x - 19$$
$$x^2 + 10x + 25 + x^2 - 49 = 6x - 19$$
$$2x^2 + 10x - 24 = 6x - 19$$
$$2x^2 + 4x - 5 = 0$$
$$D = 4^2 - 4 * 2 * (-5) = 16 + 40 = 56$$
$$x_1 = \frac{-4 + \sqrt{56}}{4} = \frac{-4 + 2\sqrt{14}}{4} = \frac{-2 + \sqrt{14}}{2}$$
$$x_2 = \frac{-4 - \sqrt{56}}{4} = \frac{-4 - 2\sqrt{14}}{4} = \frac{-2 - \sqrt{14}}{2}$$
3) $$(3x - 1)(x + 4) = (2x + 3)(x + 3) - 17$$
$$3x^2 + 12x - x - 4 = 2x^2 + 6x + 3x + 9 - 17$$
$$3x^2 + 11x - 4 = 2x^2 + 9x - 8$$
$$x^2 + 2x + 4 = 0$$
$$D = 2^2 - 4 * 1 * 4 = 4 - 16 = -12$$
Т.к. дискриминант отрицательный, уравнение не имеет действительных корней.