Решение:
а) $$4^2 - x^2 = 0$$
$$(4 - x)(4 + x) = 0$$
$$4 - x = 0$$ или $$4 + x = 0$$
$$x = 4$$ или $$x = -4$$
б) $$16 - 9y^2 = 0$$
$$4^2 - (3y)^2 = 0$$
$$(4 - 3y)(4 + 3y) = 0$$
$$4 - 3y = 0$$ или $$4 + 3y = 0$$
$$3y = 4$$ или $$3y = -4$$
$$y = \frac{4}{3}$$ или $$y = -\frac{4}{3}$$
в) $$(2 - y)^2 - y(y + 2,5) = 4$$
$$4 - 4y + y^2 - y^2 - 2,5y = 4$$
$$4 - 6,5y = 4$$
$$-6,5y = 0$$
$$y = 0$$
Ответы:
a) **$$x = 4, x = -4$$**
б) **$$y = \frac{4}{3}, y = -\frac{4}{3}$$**
в) **$$y = 0$$**