Вопрос:

028.43. Решите уравнение: a) \(8x(1 + 2x) - (4x + 3)(4x - 3) = 2x\); б) \(x - 3x(1 - 12x) = 11 - (5 - 6x)(6x + 5)\); в) \((6x - 1)(6x + 1) - 4x(9x + 2) = -1\); г) \((8 - 9x)x = -40 + (6 - 3x)(6 + 3x)\).

Ответ:

**28.43** * **a)** \(8x(1 + 2x) - (4x + 3)(4x - 3) = 2x\) \(8x + 16x^2 - (16x^2 - 9) = 2x\) \(8x + 16x^2 - 16x^2 + 9 = 2x\) \(8x + 9 = 2x\) \(6x = -9\) \(x = -\frac{9}{6} = -\frac{3}{2} = -1.5\) * **б)** \(x - 3x(1 - 12x) = 11 - (5 - 6x)(6x + 5)\) \(x - 3x + 36x^2 = 11 - (25 - 36x^2)\) \(-2x + 36x^2 = 11 - 25 + 36x^2\) \(-2x + 36x^2 = -14 + 36x^2\) \(-2x = -14\) \(x = 7\) * **в)** \((6x - 1)(6x + 1) - 4x(9x + 2) = -1\) \(36x^2 - 1 - 36x^2 - 8x = -1\) \(-8x = 0\) \(x = 0\) * **г)** \((8 - 9x)x = -40 + (6 - 3x)(6 + 3x)\) \(8x - 9x^2 = -40 + (36 - 9x^2)\) \(8x - 9x^2 = -40 + 36 - 9x^2\) \(8x - 9x^2 = -4 - 9x^2\) \(8x = -4\) \(x = -\frac{4}{8} = -\frac{1}{2} = -0.5\)
Смотреть решения всех заданий с фото
Подать жалобу Правообладателю

Похожие