Вопрос:

Solve the system of inequalities: $$\begin{cases} x+3 \geq -2 \\ x+1.1 \geq 0 \end{cases}$$

Ответ:

Let's solve each inequality separately:

1) $$x + 3 \geq -2$$

Subtract 3 from both sides: $$x \geq -2 - 3$$

$$x \geq -5$$

2) $$x + 1.1 \geq 0$$

Subtract 1.1 from both sides: $$x \geq -1.1$$

Now we need to find the intersection of the two solutions. Since $$x$$ must be greater than or equal to both -5 and -1.1, we choose the larger value.

Therefore, $$x \geq -1.1$$

This corresponds to option 3 on the number line, where the interval is from -1.1 to infinity, including -1.1.

Answer: 3

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие