Для решения этой задачи нам нужно вспомнить формулу площади круга: $$S = \pi r^2$$, где $$S$$ - площадь круга, $$\pi$$ - число пи (приближенно 3,14), а $$r$$ - радиус круга.
Площадь кольца можно найти, вычитая площадь меньшего круга из площади большего круга.
1. Найдем площадь большего круга (с радиусом 7 см):
$$S_1 = \pi r_1^2 = 3,14 * 7^2 = 3,14 * 49 = 153,86$$ (см²)
2. Найдем площадь меньшего круга (с радиусом 4 см):
$$S_2 = \pi r_2^2 = 3,14 * 4^2 = 3,14 * 16 = 50,24$$ (см²)
3. Найдем площадь кольца, вычитая площадь меньшего круга из площади большего круга:
$$S = S_1 - S_2 = 153,86 - 50,24 = 103,62$$ (см²)
Ответ: Площадь кольца равна 103,62 см².