Вопрос:

УПРАЖНЕНИЕ 28, Задача 3: В гидравлической машине площади поршней равны 20 см² и 200 см². На малый поршень поставили гирю массой 2 кг. Гирю какой массы при этом сможет удержать большой поршень?

Ответ:

Решение: Сначала найдем силу, действующую на малый поршень. Сила равна весу гири: F = mg, где m - масса, g - ускорение свободного падения (приближенно 10 м/с²). \(F_1\) = 2 кг * 10 м/с² = 20 Н. Теперь используем закон Паскаля: \(\frac{F_1}{A_1}\) = \(\frac{F_2}{A_2}\). Выразим \(F_2\): \(F_2\) = \(\frac{F_1 * A_2}{A_1}\). Подставим значения: \(F_2\) = \(\frac{20 H * 200 см^2}{20 см^2}\) = 200 H. Чтобы найти массу гири, которую сможет удержать большой поршень, используем формулу m = \(\frac{F}{g}\). m = \(\frac{200 H}{10 м/с^2}\) = 20 кг. Ответ: Большой поршень сможет удержать гирю массой 20 кг.
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие