Упростим выражение:
$$\frac{x^2 - y^2}{x + y} - \frac{x^3 + y^3}{x^2 - y^2} = \frac{(x - y)(x + y)}{x + y} - \frac{(x + y)(x^2 - xy + y^2)}{(x - y)(x + y)} =$$ $$x - y - \frac{x^2 - xy + y^2}{x - y} = \frac{(x - y)^2 - (x^2 - xy + y^2)}{x - y} = \frac{x^2 - 2xy + y^2 - x^2 + xy - y^2}{x - y} =$$ $$\frac{-xy}{x - y} = \frac{xy}{y - x}$$Ответ: $$\frac{xy}{y - x}$$