Упростим выражение:
$$(\frac{a^{2}+b^{2}}{a^{2}-b^{2}} - \frac{a-b}{a+b}) : \frac{2ab}{a+b} = (\frac{a^{2}+b^{2}}{(a-b)(a+b)} - \frac{(a-b)(a-b)}{(a+b)(a-b)}) : \frac{2ab}{a+b} = \frac{a^{2}+b^{2} - (a^{2} - 2ab + b^{2})}{(a-b)(a+b)} : \frac{2ab}{a+b} = \frac{a^{2}+b^{2} - a^{2} + 2ab - b^{2}}{(a-b)(a+b)} : \frac{2ab}{a+b} = \frac{2ab}{(a-b)(a+b)} : \frac{2ab}{a+b} = \frac{2ab}{(a-b)(a+b)} \cdot \frac{a+b}{2ab} = \frac{1}{a-b}$$
Ответ: $$\frac{1}{a-b}$$