Вопрос:

117. Упростите выражение и найдите его значение: 2) $$\frac{2c + 3}{2c^2 - 3c} + \frac{2c - 3}{2c^2 + 3c} - \frac{16c}{4c^2 - 9}$$, если $$c = -0,8$$;

Ответ:

Решение:

1) Упростим выражение:

$$\frac{2c + 3}{2c^2 - 3c} + \frac{2c - 3}{2c^2 + 3c} - \frac{16c}{4c^2 - 9} = \frac{2c + 3}{c(2c - 3)} + \frac{2c - 3}{c(2c + 3)} - \frac{16c}{(2c - 3)(2c + 3)} = $$ $$\frac{(2c + 3)^2 + (2c - 3)^2 - 16c \cdot c}{c(2c - 3)(2c + 3)} = \frac{4c^2 + 12c + 9 + 4c^2 - 12c + 9 - 16c^2}{c(2c - 3)(2c + 3)} = $$ $$\frac{-8c^2 + 18}{c(2c - 3)(2c + 3)} = \frac{-2(4c^2 - 9)}{c(2c - 3)(2c + 3)} = \frac{-2(2c - 3)(2c + 3)}{c(2c - 3)(2c + 3)} = -\frac{2}{c}$$

2) Найдем значение выражения при $$c = -0,8$$:

$$- \frac{2}{-0,8} = \frac{2}{0,8} = \frac{20}{8} = \frac{5}{2} = 2,5$$

Ответ: 2,5

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие