1) Упростим выражение $$\frac{a}{4a-15} + \frac{a^2+5a}{4a^2-20a}$$.
$$\frac{a}{4a-15} + \frac{a^2+5a}{4a^2-20a} = \frac{a}{4a-15} + \frac{a(a+5)}{4a(a-5)} = \frac{a}{4a-15} + \frac{a+5}{4(a-5)} = \frac{4a(a-5) + (a+5)(4a-15)}{4(4a-15)(a-5)} = \frac{4a^2-20a + 4a^2+20a-15a-75}{4(4a-15)(a-5)} = \frac{8a^2-15a-75}{4(4a-15)(a-5)}$$
Ответ: $$\frac{8a^2-15a-75}{4(4a-15)(a-5)}$$