Вопрос:

4. В треугольнике ABC угол C равен 90°, sin B = 7/12, AB=48. Найдите AC.

Ответ:

В прямоугольном треугольнике ABC, где угол C равен 90°, синус угла B определяется как отношение противолежащего катета (AC) к гипотенузе (AB). $$\sin{B} = \frac{AC}{AB}$$ Известно, что $$\sin{B} = \frac{7}{12}$$ и AB = 48. Надо найти AC. $$\frac{7}{12} = \frac{AC}{48}$$ Умножаем обе части уравнения на 48: $$AC = \frac{7}{12} * 48 = 7 * 4 = 28$$ Ответ: 28
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие