Радиус окружности, описанной около треугольника, можно найти по формуле:
$$R = \frac{AB}{2 \cdot sin(C)}$$
Подставим известные значения:
$$R = \frac{8\sqrt{3}}{2 \cdot sin(60°)} = \frac{8\sqrt{3}}{2 \cdot \frac{\sqrt{3}}{2}} = \frac{8\sqrt{3}}{\sqrt{3}} = 8$$
Ответ: 8