Вопрос:

В задачах 572-574 использованы следующие обозначения для прямоугольного треугольника АВС с прямым углом С и высотой СН: BC = a, CA = b, AB = c, CH = h, AH = bc, HB = ac. 572. Найдите: а) h, a и b, если bc = 25, ac = 16; б) h, a и b, если bc = 36, ac = 64; в) a, c и ac, если b = 12, bc = 6; г) b, c и bc, если a = 8, ac = 4; д) h, b, ac и bc, если a = 6, c = 9.

Ответ:

Разберем каждый пункт задачи 572. а) Дано: (b_c = 25), (a_c = 16). Найти: (h, a, b). 1. (h = sqrt{b_c cdot a_c} = sqrt{25 cdot 16} = sqrt{400} = 20). 2. (a = sqrt{c cdot a_c}). Найдем (c = a_c + b_c = 16 + 25 = 41). Тогда (a = sqrt{41 cdot 16} = sqrt{656} = 4sqrt{41}). 3. (b = sqrt{c cdot b_c} = sqrt{41 cdot 25} = 5sqrt{41}). **Ответ:** (h = 20), (a = 4sqrt{41}), (b = 5sqrt{41}). б) Дано: (b_c = 36), (a_c = 64). Найти: (h, a, b). 1. (h = sqrt{b_c cdot a_c} = sqrt{36 cdot 64} = 6 cdot 8 = 48). 2. (c = a_c + b_c = 64 + 36 = 100). Тогда (a = sqrt{c cdot a_c} = sqrt{100 cdot 64} = 10 cdot 8 = 80). 3. (b = sqrt{c cdot b_c} = sqrt{100 cdot 36} = 10 cdot 6 = 60). **Ответ:** (h = 48), (a = 80), (b = 60). в) Дано: (b = 12), (b_c = 6). Найти: (a, c, a_c). 1. (c = rac{b^2}{b_c} = rac{12^2}{6} = rac{144}{6} = 24). 2. (a = sqrt{c^2 - b^2} = sqrt{24^2 - 12^2} = sqrt{576 - 144} = sqrt{432} = 12sqrt{3}). 3. (a_c = rac{a^2}{c} = rac{(12sqrt{3})^2}{24} = rac{144 cdot 3}{24} = rac{432}{24} = 18). **Ответ:** (a = 12sqrt{3}), (c = 24), (a_c = 18). г) Дано: (a = 8), (a_c = 4). Найти: (b, c, b_c). 1. (c = rac{a^2}{a_c} = rac{8^2}{4} = rac{64}{4} = 16). 2. (b = sqrt{c^2 - a^2} = sqrt{16^2 - 8^2} = sqrt{256 - 64} = sqrt{192} = 8sqrt{3}). 3. (b_c = c - a_c = 16 - 4 = 12). **Ответ:** (b = 8sqrt{3}), (c = 16), (b_c = 12). д) Дано: (a = 6), (c = 9). Найти: (h, b, a_c, b_c). 1. (b = sqrt{c^2 - a^2} = sqrt{9^2 - 6^2} = sqrt{81 - 36} = sqrt{45} = 3sqrt{5}). 2. (h = rac{a cdot b}{c} = rac{6 cdot 3sqrt{5}}{9} = rac{18sqrt{5}}{9} = 2sqrt{5}). 3. (a_c = rac{a^2}{c} = rac{6^2}{9} = rac{36}{9} = 4). 4. (b_c = c - a_c = 9 - 4 = 5). **Ответ:** (h = 2sqrt{5}), (b = 3sqrt{5}), (a_c = 4), (b_c = 5).
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие