a) $$y^3 \cdot y^5 = y^{3+5} = y^8$$
б) $$y^9 : y^2 = y^{9-2} = y^7$$
в) $$y^6 : y^6 = y^{6-6} = y^0 = 1$$
г) $$(y^7)^6 = y^{7 \cdot 6} = y^{42}$$
д) $$(y^5)^4 \cdot y^7 = y^{5 \cdot 4} \cdot y^7 = y^{20} \cdot y^7 = y^{20+7} = y^{27}$$
е) $$\frac{y^{14} \cdot y^6}{y^{18}} = \frac{y^{14+6}}{y^{18}} = \frac{y^{20}}{y^{18}} = y^{20-18} = y^2$$
ж) $$y^5 \cdot (y^3)^5 = y^5 \cdot y^{3 \cdot 5} = y^5 \cdot y^{15} = y^{5+15} = y^{20}$$
з) $$(4y)^3 = 4^3 \cdot y^3 = 64y^3$$
и) $$(7a^4b)^2 = 7^2 \cdot (a^4)^2 \cdot b^2 = 49a^8b^2$$
к) $$(\frac{a}{2})^5 = \frac{a^5}{2^5} = \frac{a^5}{32}$$
л) $$(\frac{3a^2}{2b^3})^4 = \frac{(3a^2)^4}{(2b^3)^4} = \frac{3^4 \cdot (a^2)^4}{2^4 \cdot (b^3)^4} = \frac{81a^8}{16b^{12}}$$