Контрольные задания > 10. Высота прямоугольного треугольника, опущенная на гипотенузу, образует с одним из катетов угол, равный 55°. Найти острые углы этого треугольника.
Вопрос:
10. Высота прямоугольного треугольника, опущенная на гипотенузу, образует с одним из катетов угол, равный 55°. Найти острые углы этого треугольника.
Ответ:
Пусть дан прямоугольный треугольник ABC (угол C = 90°). Проведена высота CH к гипотенузе AB. Пусть угол между высотой CH и катетом AC равен 55°, то есть угол ACH = 55°.
В треугольнике ACH угол AHC = 90°. Следовательно, угол CAH (угол A) = 90° - 55° = 35°.
В треугольнике ABC угол B = 90° - угол A = 90° - 35° = 55°.
Итак, острые углы треугольника ABC равны 35° и 55°.
Ответ: 35° и 55°.