$$3^{x+1} = 9$$
$$3^{x+1} = 3^2$$
$$x+1 = 2$$
$$x = 1$$
$$2 \cdot 4^x = 64$$
$$2 \cdot (2^2)^x = 2^6$$
$$2^{2x+1} = 2^6$$
$$2x + 1 = 6$$
$$2x = 5$$
$$x = 2,5$$
$$3^{x+2} \cdot 3^{x-2} = 1$$
$$3^{(x+2) + (x-2)} = 1$$
$$3^{2x} = 1$$
$$2x = 0$$
$$x = 0$$
$$0,5^{x+7} \cdot 0,5^{1-2x} = 2$$
$$0,5^{(x+7) + (1 - 2x)} = 2$$
$$0,5^{8 - x} = 2$$
$$0,5^{8 - x} = 0,5^{-1}$$
$$8 - x = -1$$
$$x = 9$$
$$0,6^x \cdot 0,6^3 = \frac{0,6^{2x}}{0,6^5}$$
$$0,6^{x+3} = 0,6^{2x-5}$$
$$x + 3 = 2x - 5$$
$$x = 8$$
$$6^{3x} \cdot \frac{1}{6} = \frac{6}{6^{2x}}$$
$$6^{3x-1} = 6^{1-2x}$$
$$3x - 1 = 1 - 2x$$
$$5x = 2$$
$$x = 0,4$$
Ответ: 1; 2,5; 0; 9; 8; 0,4