Вопрос:

4. Является ли пара чисел (1;-2) решением системы? \[\begin{cases} x - y = 3 \\ 2x + y = 0 \end{cases}\] Для проверки произведите решение

Ответ:

Чтобы проверить, является ли пара чисел (1;-2) решением системы уравнений, подставим x=1 и y=-2 в каждое уравнение системы: Первое уравнение: $$x - y = 1 - (-2) = 1 + 2 = 3$$ Второе уравнение: $$2x + y = 2(1) + (-2) = 2 - 2 = 0$$ Так как оба уравнения выполняются при x=1 и y=-2, то пара чисел (1;-2) является решением системы уравнений. Решение системы уравнений: \[\begin{cases} x - y = 3 \\ 2x + y = 0 \end{cases}\] Сложим оба уравнения: $$(x - y) + (2x + y) = 3 + 0$$ $$3x = 3$$ $$x = 1$$ Подставим x=1 во второе уравнение: $$2(1) + y = 0$$ $$2 + y = 0$$ $$y = -2$$ Решением системы является пара чисел (1;-2).
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие