Задание 5. Примените формулы сокращенного умножения и упростите выражения
1) $$(x-4)^2 - (5+x)^2$$ Применим формулы сокращенного умножения:
$$(a-b)^2 = a^2 - 2ab + b^2$$
$$(a+b)^2 = a^2 + 2ab + b^2$$
Тогда: $$= (x^2 - 8x + 16) - (25 + 10x + x^2)$$ Раскроем скобки: $$= x^2 - 8x + 16 - 25 - 10x - x^2$$ Приведем подобные члены: $$= (x^2 - x^2) + (-8x - 10x) + (16 - 25)$$ $$= -18x - 9$$
Ответ: $$-18x - 9$$
2) $$(7-x)(7+x) + (x + 6)^2$$ Применим формулы сокращенного умножения: $$(a-b)(a+b) = a^2 - b^2$$
$$(a+b)^2 = a^2 + 2ab + b^2$$
Тогда: $$= (49 - x^2) + (x^2 + 12x + 36)$$ Раскроем скобки: $$= 49 - x^2 + x^2 + 12x + 36$$ Приведем подобные члены: $$= (-x^2 + x^2) + 12x + (49 + 36)$$ $$= 12x + 85$$
Ответ: $$12x + 85$$