1) 7ˣ⁻² = 3²⁻ˣ
$$7^{x-2} = 3^{2-x}$$
$$7^{x-2} = \frac{3^2}{3^x}$$
$$7^{x-2} = \frac{9}{3^x}$$
Прологарифмируем обе части:
$$(x-2)\log(7) = \log(9) - x\log(3)$$
$$x\log(7) - 2\log(7) = \log(9) - x\log(3)$$
$$x\log(7) + x\log(3) = \log(9) + 2\log(7)$$
$$x(\log(7) + \log(3)) = \log(9) + \log(49)$$
$$x = \frac{\log(9 \cdot 49)}{\log(7 \cdot 3)} = \frac{\log(441)}{\log(21)}$$
$$x = \frac{\log(21^2)}{\log(21)} = \frac{2 \log(21)}{\log(21)} = 2$$
Ответ: 2