Вопрос:

1. Упростите выражение: 1) a) $$2\sqrt{a}+6\sqrt{a}-7\sqrt{a}$$; б) $$4\sqrt{x}+2\sqrt{x}-5\sqrt{x}$$; в) $$\sqrt{49c}-\sqrt{16c}+\sqrt{25c}$$; г) $$\sqrt{32}+\sqrt{18}-\sqrt{50}$$; 2) a) $$\sqrt{8m}-0,2\sqrt{200m}+3\sqrt{72m}$$; б) $$3\sqrt{12b}+0,5\sqrt{108k}-2\sqrt{48b}+0,01\sqrt{300k}$$; 3) a) $$\sqrt{6}(\sqrt{24}-\sqrt{54})$$; б) $$(7\sqrt{2}-\sqrt{98}+\sqrt{10})\cdot\sqrt{2}$$; в) $$2\sqrt{3}(3-4\sqrt{75})-3\sqrt{12}$$; г) $$\sqrt{18}-(\sqrt{14}-2\sqrt{7})\cdot\sqrt{7}$$.

Ответ:

1) a) $$2\sqrt{a}+6\sqrt{a}-7\sqrt{a} = (2+6-7)\sqrt{a} = 1\sqrt{a} = \sqrt{a}$$. б) $$4\sqrt{x}+2\sqrt{x}-5\sqrt{x} = (4+2-5)\sqrt{x} = 1\sqrt{x} = \sqrt{x}$$. в) $$\sqrt{49c}-\sqrt{16c}+\sqrt{25c} = 7\sqrt{c}-4\sqrt{c}+5\sqrt{c} = (7-4+5)\sqrt{c} = 8\sqrt{c}$$. г) $$\sqrt{32}+\sqrt{18}-\sqrt{50} = \sqrt{16\cdot2}+\sqrt{9\cdot2}-\sqrt{25\cdot2} = 4\sqrt{2}+3\sqrt{2}-5\sqrt{2} = (4+3-5)\sqrt{2} = 2\sqrt{2}$$. 2) a) $$\sqrt{8m}-0,2\sqrt{200m}+3\sqrt{72m} = \sqrt{4\cdot2m}-0,2\sqrt{100\cdot2m}+3\sqrt{36\cdot2m} = 2\sqrt{2m}-0,2\cdot10\sqrt{2m}+3\cdot6\sqrt{2m} = 2\sqrt{2m}-2\sqrt{2m}+18\sqrt{2m} = 18\sqrt{2m}$$. б) $$3\sqrt{12b}+0,5\sqrt{108k}-2\sqrt{48b}+0,01\sqrt{300k} = 3\sqrt{4\cdot3b}+0,5\sqrt{36\cdot3k}-2\sqrt{16\cdot3b}+0,01\sqrt{100\cdot3k} = 3\cdot2\sqrt{3b}+0,5\cdot6\sqrt{3k}-2\cdot4\sqrt{3b}+0,01\cdot10\sqrt{3k} = 6\sqrt{3b}+3\sqrt{3k}-8\sqrt{3b}+0,1\sqrt{3k} = -2\sqrt{3b}+3,1\sqrt{3k}$$. 3) a) $$\sqrt{6}(\sqrt{24}-\sqrt{54}) = \sqrt{6}\cdot\sqrt{24}-\sqrt{6}\cdot\sqrt{54} = \sqrt{144}-\sqrt{324} = 12-18 = -6$$. б) $$(7\sqrt{2}-\sqrt{98}+\sqrt{10})\cdot\sqrt{2} = 7\sqrt{2}\cdot\sqrt{2}-\sqrt{98}\cdot\sqrt{2}+\sqrt{10}\cdot\sqrt{2} = 7\cdot2-\sqrt{196}+\sqrt{20} = 14-14+\sqrt{4\cdot5} = 2\sqrt{5}$$. в) $$2\sqrt{3}(3-4\sqrt{75})-3\sqrt{12} = 6\sqrt{3}-8\sqrt{3}\cdot\sqrt{75}-3\sqrt{4\cdot3} = 6\sqrt{3}-8\sqrt{225}-3\cdot2\sqrt{3} = 6\sqrt{3}-8\cdot15-6\sqrt{3} = -120$$. г) $$\sqrt{18}-(\sqrt{14}-2\sqrt{7})\cdot\sqrt{7} = \sqrt{9\cdot2}-\sqrt{14}\cdot\sqrt{7}+2\sqrt{7}\cdot\sqrt{7} = 3\sqrt{2}-\sqrt{98}+2\cdot7 = 3\sqrt{2}-\sqrt{49\cdot2}+14 = 3\sqrt{2}-7\sqrt{2}+14 = 14-4\sqrt{2}$$.
Смотреть решения всех заданий с фото

Похожие