Вопрос:

2. Выполните действия: 1) a) $$(1-\sqrt{2})(3+\sqrt{2})$$; б) $$(\sqrt{3}+\sqrt{7})(2\sqrt{3}-\sqrt{7})$$; в) $$(\sqrt{5}-\sqrt{18})(\sqrt{5}-2\sqrt{2})$$; г) $$(2\sqrt{7}+\sqrt{12})(\sqrt{12}-\sqrt{7})-\sqrt{84}$$; 2) a) $$(b+\sqrt{k})(b-\sqrt{k})$$; б) $$(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})$$; г) $$(a-\sqrt{c})^2$$; д) $$(\sqrt{x}+\sqrt{b})^2$$; в) $$(3-\sqrt{15})(\sqrt{15}+3)$$; е) $$(\sqrt{2}+\sqrt{10})^2$$; 3) a) $$(2\sqrt{3}+1)(1-2\sqrt{3})$$; б) $$(6\sqrt{2}-\sqrt{13})(\sqrt{13}+6\sqrt{2})$$; в) $$(1+3\sqrt{2})^2$$; г) $$(5\sqrt{6}-6\sqrt{2})^2$$.

Ответ:

1) a) $$(1-\sqrt{2})(3+\sqrt{2}) = 1\cdot3+1\cdot\sqrt{2}-3\sqrt{2}-\sqrt{2}\cdot\sqrt{2} = 3+\sqrt{2}-3\sqrt{2}-2 = 1-2\sqrt{2}$$. б) $$(\sqrt{3}+\sqrt{7})(2\sqrt{3}-\sqrt{7}) = \sqrt{3}\cdot2\sqrt{3}-\sqrt{3}\cdot\sqrt{7}+2\sqrt{7}\cdot\sqrt{3}-\sqrt{7}\cdot\sqrt{7} = 2\cdot3-\sqrt{21}+2\sqrt{21}-7 = 6+\sqrt{21}-7 = -1+\sqrt{21}$$. в) $$(\sqrt{5}-\sqrt{18})(\sqrt{5}-2\sqrt{2}) = (\sqrt{5}-3\sqrt{2})(\sqrt{5}-2\sqrt{2}) = \sqrt{5}\cdot\sqrt{5}-\sqrt{5}\cdot2\sqrt{2}-3\sqrt{2}\cdot\sqrt{5}+3\sqrt{2}\cdot2\sqrt{2} = 5-2\sqrt{10}-3\sqrt{10}+12 = 17-5\sqrt{10}$$. г) $$(2\sqrt{7}+\sqrt{12})(\sqrt{12}-\sqrt{7})-\sqrt{84} = (2\sqrt{7}+2\sqrt{3})(2\sqrt{3}-\sqrt{7})-\sqrt{4\cdot21} = 4\sqrt{21}-2\cdot7+4\cdot3-2\sqrt{21}-2\sqrt{21} = 4\sqrt{21}-14+12-2\sqrt{21}-2\sqrt{21} = -2$$. 2) a) $$(b+\sqrt{k})(b-\sqrt{k}) = b^2 - (\sqrt{k})^2 = b^2-k$$. б) $$(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}) = (\sqrt{a})^2-(\sqrt{b})^2 = a-b$$. г) $$(a-\sqrt{c})^2 = a^2-2a\sqrt{c}+(\sqrt{c})^2 = a^2-2a\sqrt{c}+c$$. д) $$(\sqrt{x}+\sqrt{b})^2 = (\sqrt{x})^2+2\sqrt{x}\sqrt{b}+(\sqrt{b})^2 = x+2\sqrt{xb}+b$$. в) $$(3-\sqrt{15})(\sqrt{15}+3) = 3\sqrt{15}+9-15-3\sqrt{15} = -6$$. е) $$(\sqrt{2}+\sqrt{10})^2 = (\sqrt{2})^2+2\sqrt{2}\sqrt{10}+(\sqrt{10})^2 = 2+2\sqrt{20}+10 = 12+2\sqrt{4\cdot5} = 12+4\sqrt{5}$$. 3) a) $$(2\sqrt{3}+1)(1-2\sqrt{3}) = 2\sqrt{3}-4\cdot3+1-2\sqrt{3} = 1-12 = -11$$. б) $$(6\sqrt{2}-\sqrt{13})(\sqrt{13}+6\sqrt{2}) = (6\sqrt{2})^2-(\sqrt{13})^2 = 36\cdot2-13 = 72-13 = 59$$. в) $$(1+3\sqrt{2})^2 = 1^2+2\cdot1\cdot3\sqrt{2}+(3\sqrt{2})^2 = 1+6\sqrt{2}+9\cdot2 = 1+6\sqrt{2}+18 = 19+6\sqrt{2}$$. г) $$(5\sqrt{6}-6\sqrt{2})^2 = (5\sqrt{6})^2-2\cdot5\sqrt{6}\cdot6\sqrt{2}+(6\sqrt{2})^2 = 25\cdot6-60\sqrt{12}+36\cdot2 = 150-60\sqrt{4\cdot3}+72 = 150-120\sqrt{3}+72 = 222-120\sqrt{3}$$.
Смотреть решения всех заданий с фото

Похожие