Контрольные задания > 4. Прямая, проведённая параллельно боковой стороне трапеции через конец меньшего основания равного 5, отсекает треугольник, периметр которого 20. Найдите периметр трапеции.
Вопрос:
4. Прямая, проведённая параллельно боковой стороне трапеции через конец меньшего основания равного 5, отсекает треугольник, периметр которого 20. Найдите периметр трапеции.
Ответ:
Пусть дана трапеция ABCD, где BC - меньшее основание, равное 5. Проведем прямую через точку C, параллельную стороне AB, до пересечения с основанием AD в точке E. Тогда отсекается треугольник CDE, периметр которого равен 20. Так как CE параллельна AB, а BC параллельна AE, то ABCE - параллелограмм и CE = AB. Так как прямая CE параллельна боковой стороне трапеции AB, то CE=AB, также, BC=AE=5. Таким образом, периметр треугольника CDE = CD + DE + CE = 20. При этом DE = AD - AE = AD - 5. Периметр трапеции ABCD = AB + BC + CD + AD. Заменяя, AB на CE, получаем: Периметр трапеции ABCD = CE + 5 + CD + AD. Мы знаем что CE + CD + (AD - AE) = 20, то есть CE + CD + AD - 5 = 20 => CE + CD + AD = 25. А периметр трапеции это CE+5+CD+AD= 25+5=30. Ответ: 30.