Вопрос:

885. Выполните умножение: a) (b-2)(b + 2)(b² + 4); б) (3 - y)(3 + y)(9 + y²); в) (а² + 1)(a + 1)(а – 1); г) (с⁴ + 1)(c² + 1)(c² – 1); д) (x - 3)²(х+3)²; e) (y + 4)²(y-4)²; ж) (а – 5)²(5 + а)²; з) (c + 4)²(4-c)².

Ответ:

a) \((b-2)(b+2)(b^2+4) = (b^2 - 4)(b^2 + 4) = b^4 - 16\) б) \((3-y)(3+y)(9+y^2) = (9 - y^2)(9+y^2) = 81 - y^4\) в) \((a^2 + 1)(a + 1)(a - 1) = (a^2 + 1)(a^2 - 1) = a^4 - 1\) г) \((c^4 + 1)(c^2 + 1)(c^2 - 1) = (c^4 + 1)(c^4 - 1) = c^8 - 1\) д) \((x-3)^2(x+3)^2 = ((x-3)(x+3))^2 = (x^2 - 9)^2 = x^4 - 18x^2 + 81\) е) \((y+4)^2(y-4)^2 = ((y+4)(y-4))^2 = (y^2 - 16)^2 = y^4 - 32y^2 + 256\) ж) \((a-5)^2(5+a)^2 = ((a-5)(a+5))^2 = (a^2 - 25)^2 = a^4 - 50a^2 + 625\) з) \((c+4)^2(4-c)^2 = ((c+4)(4-c))^2 = (16 - c^2)^2 = c^4 - 32c^2 + 256\) Ответ: a) \(b^4 - 16\) б) \(81 - y^4\) в) \(a^4 - 1\) г) \(c^8 - 1\) д) \(x^4 - 18x^2 + 81\) е) \(y^4 - 32y^2 + 256\) ж) \(a^4 - 50a^2 + 625\) з) \(c^4 - 32c^2 + 256\)
Смотреть решения всех заданий с фото
Подать жалобу Правообладателю

Похожие