Пусть одна сторона прямоугольника равна a = 5 см, диагональ равна d = 13 см.
По теореме Пифагора найдем вторую сторону b:
$$ a^2 + b^2 = d^2 $$
$$ 5^2 + b^2 = 13^2 $$
$$ 25 + b^2 = 169 $$
$$ b^2 = 169 - 25 = 144 $$
$$ b = \sqrt{144} = 12 \text{ см} $$
Площадь прямоугольника равна произведению его сторон:
$$ S = a \cdot b $$
$$ S = 5 \cdot 12 = 60 \text{ см}^2 $$
Ответ: 60 см2