Дано: ∠EDC = 55°.
Найти: ∠A.
Решение:
Рассмотрим треугольник ABC. ∠BDC = 90° по условию.
Сумма углов в треугольнике равна 180°.
∠A + ∠B + ∠C = 180°.
∠EDC = 55°.
∠C = ∠EDC = 55°.
∠BDC = 90°.
∠B + ∠C + ∠BDC = 180°.
∠B = ∠1 + ∠2
∠1 = ∠2
Пусть ∠1 = ∠2 = х
Тогда ∠B = 2х
∠A + ∠B + ∠C = 180°
∠A + 2х + 55 = 180°
∠A + 2х = 125°
Рассмотрим треугольник BDC:
∠DBC + ∠BCD = 90°
x + 55 = 90°
x = 35°
∠A + 2х = 125°
∠A + 2 * 35 = 125°
∠A + 70 = 125°
∠A = 55°
Ответ: ∠А = 55°.