7) Преобразуем выражение $$\frac{18}{cos^2 82° + 5 + cos^2 172°}$$.
Так как $$cos(180° - \alpha) = -cos\alpha$$, то $$cos172° = cos(180° - 8°) = -cos8°$$
Следовательно, $$cos^2 172° = (-cos8°)^2 = cos^2 8°$$
Заметим, что $$cos82° = cos(90° - 8°) = sin8°$$
Тогда $$cos^2 82° = sin^2 8°$$
$$\frac{18}{cos^2 82° + 5 + cos^2 172°} = \frac{18}{sin^2 8° + 5 + cos^2 8°}$$
Так как $$sin^2 \alpha + cos^2 \alpha = 1$$, то $$sin^2 8° + cos^2 8° = 1$$
$$\frac{18}{sin^2 8° + 5 + cos^2 8°} = \frac{18}{1 + 5} = \frac{18}{6} = 3$$
Ответ: 3