Вопрос:

Касательные в точках А и В к окружности с центром О пересекаются под углом 66°. Найдите угол АВО. Ответ дайте в градусах.

Смотреть решения всех заданий с листа

Ответ:

1. Рассмотрим четырехугольник АВОК, где К - точка пересечения касательных.

2. Сумма углов четырехугольника равна 360°. Углы ОАK и ОВК прямые, так как касательная перпендикулярна радиусу, проведенному в точку касания.

3. Угол между касательными равен 66°.

4. Тогда угол АОВ равен 360° - 90° - 90° - 66° = 114°.

5. В равнобедренном треугольнике АОВ (ОА = ОВ как радиусы), углы при основании равны.

6. Следовательно, угол АВО равен (180° - 114°) / 2 = 33°.

Ответ: 33

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие