Два вектора \(\overrightarrow{a}(x_1; y_1; z_1)\) и \(\overrightarrow{b}(x_2; y_2; z_2)\) коллинеарны, если их координаты пропорциональны, то есть:
$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$В данном случае, \(\overrightarrow{a}(1; 2; 3)\) и \(\overrightarrow{b}(3; 6; 9)\), поэтому проверяем пропорциональность координат:
$$\frac{1}{3} = \frac{2}{6} = \frac{3}{9}$$Все отношения равны \(\frac{1}{3}\), следовательно, векторы коллинеарны.
Ответ: Векторы коллинеарны.