Для того чтобы ответить на вопрос, равны ли векторы \(\overrightarrow{AB}\) и \(\overrightarrow{CD}\), необходимо найти координаты этих векторов и сравнить их.
Координаты вектора \(\overrightarrow{AB}\) находятся как разность координат конца и начала вектора:
$$\overrightarrow{AB} = (1-0; 1-0; 1-0) = (1; 1; 1)$$Аналогично находим координаты вектора \(\overrightarrow{CD}\):
$$\overrightarrow{CD} = (2-3; 2-3; 2-3) = (-1; -1; -1)$$Два вектора равны, если равны их соответствующие координаты. В данном случае, \(\overrightarrow{AB} = (1; 1; 1)\) и \(\overrightarrow{CD} = (-1; -1; -1)\). Очевидно, что координаты не равны.
Ответ: Векторы не равны.