Сумма многочленов:
\((-\frac{3}{4}s^2 + \frac{4}{5}t^3) + (\frac{1}{12}s^2 - \frac{4}{15}t^3) = (-\frac{3}{4} + \frac{1}{12})s^2 + (\frac{4}{5} - \frac{4}{15})t^3 = (\frac{-9+1}{12})s^2 + (\frac{12-4}{15})t^3 = -\frac{8}{12}s^2 + \frac{8}{15}t^3 = -\frac{2}{3}s^2 + \frac{8}{15}t^3\)
Разность многочленов:
\((-\frac{3}{4}s^2 + \frac{4}{5}t^3) - (\frac{1}{12}s^2 - \frac{4}{15}t^3) = (-\frac{3}{4} - \frac{1}{12})s^2 + (\frac{4}{5} + \frac{4}{15})t^3 = (\frac{-9-1}{12})s^2 + (\frac{12+4}{15})t^3 = -\frac{10}{12}s^2 + \frac{16}{15}t^3 = -\frac{5}{6}s^2 + \frac{16}{15}t^3\)
Произведение многочленов:
\((-\frac{3}{4}s^2 + \frac{4}{5}t^3) \cdot (\frac{1}{12}s^2 - \frac{4}{15}t^3) = -\frac{3}{4}s^2 \cdot \frac{1}{12}s^2 - \frac{3}{4}s^2 \cdot (-\frac{4}{15}t^3) + \frac{4}{5}t^3 \cdot \frac{1}{12}s^2 + \frac{4}{5}t^3 \cdot (-\frac{4}{15}t^3) = -\frac{3}{48}s^4 + \frac{12}{60}s^2t^3 + \frac{4}{60}s^2t^3 - \frac{16}{75}t^6 = -\frac{1}{16}s^4 + \frac{1}{5}s^2t^3 + \frac{1}{15}s^2t^3 - \frac{16}{75}t^6 = -\frac{1}{16}s^4 + (\frac{3+1}{15})s^2t^3 - \frac{16}{75}t^6 = -\frac{1}{16}s^4 + \frac{4}{15}s^2t^3 - \frac{16}{75}t^6\)
Ответ: Сумма: \(-\frac{2}{3}s^2 + \frac{8}{15}t^3\); Разность: \(-\frac{5}{6}s^2 + \frac{16}{15}t^3\); Произведение: \(-\frac{1}{16}s^4 + \frac{4}{15}s^2t^3 - \frac{16}{75}t^6\).