Пусть \(\angle A = x\). Тогда \(\angle B = x + 60^\circ\) и \(\angle C = 2x\).
Сумма углов треугольника равна 180°:
\[\angle A + \angle B + \angle C = 180^\circ\]
\[x + (x + 60^\circ) + 2x = 180^\circ\]
\[4x + 60^\circ = 180^\circ\]
\[4x = 120^\circ\]
\[x = 30^\circ\]
Тогда \(\angle A = 30^\circ\), \(\angle B = 30^\circ + 60^\circ = 90^\circ\) и \(\angle C = 2 cdot 30^\circ = 60^\circ\).
Ответ: \(\angle A = 30^\circ\), \(\angle B = 90^\circ\), \(\angle C = 60^\circ\).