a) (g(x) = \sin x, x_0 = -\frac{\pi}{2})
(g'(x) = \cos x)
(g'(-\frac{\pi}{2}) = \cos(-\frac{\pi}{2}) = 0)
Ответ: 0
б) (g(x) = \cos x, x_0 = \frac{\pi}{6})
(g'(x) = -\sin x)
(g'(\frac{\pi}{6}) = -\sin(\frac{\pi}{6}) = -\frac{1}{2})
Ответ: -1/2
в) (g(x) = \cos x, x_0 = -3\pi)
(g'(x) = -\sin x)
(g'(-3\pi) = -\sin(-3\pi) = 0)
Ответ: 0
г) (g(x) = \sin x, x_0 = 0)
(g'(x) = \cos x)
(g'(0) = \cos(0) = 1)
Ответ: 1