Вопрос:

4 Найдите значение выражения: a) \frac{4^{12} \cdot 2^5}{8^9}; б) 5 + 6х³ при х = -\frac{1}{3}.

Ответ:

4. Найдем значение выражения:

  1. $$\frac{4^{12} \cdot 2^5}{8^9} = \frac{(2^2)^{12} \cdot 2^5}{(2^3)^9} = \frac{2^{2\cdot12} \cdot 2^5}{2^{3\cdot9}} = \frac{2^{24} \cdot 2^5}{2^{27}} = \frac{2^{24+5}}{2^{27}} = \frac{2^{29}}{2^{27}} = 2^{29-27} = 2^2 = 4$$
  2. $$5 + 6x^3$$ при $$x = -\frac{1}{3}$$: $$5 + 6\cdot(-\frac{1}{3})^3 = 5 + 6\cdot(-\frac{1}{27}) = 5 - \frac{6}{27} = 5 - \frac{2}{9} = \frac{45}{9} - \frac{2}{9} = \frac{43}{9} = 4\frac{7}{9}$$

Ответ: a) 4; б) $$4\frac{7}{9}$$.

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие