$$\frac{y^2 - 11y - 2}{9} = 0$$
$$y^2 - 11y - 2 = 0$$
Найдем дискриминант:
$$D = b^2 - 4ac = (-11)^2 - 4 \cdot 1 \cdot (-2) = 121 + 8 = 129$$
$$y_1 = \frac{-b + \sqrt{D}}{2a} = \frac{11 + \sqrt{129}}{2 \cdot 1} = \frac{11 + \sqrt{129}}{2}$$
$$y_2 = \frac{-b - \sqrt{D}}{2a} = \frac{11 - \sqrt{129}}{2 \cdot 1} = \frac{11 - \sqrt{129}}{2}$$
Ответ: $$\frac{11 + \sqrt{129}}{2}$$, $$\frac{11 - \sqrt{129}}{2}$$