Решить уравнение:
1) $$3^{x + 1} = 27^{x-1};$$
$$3^{x + 1} = (3^3)^{x-1};$$
$$3^{x + 1} = 3^{3(x-1)};$$
$$x + 1 = 3(x - 1);$$
$$x + 1 = 3x - 3;$$
$$2x = 4;$$
$$x = 2$$.
2) $$0,2^{x^2 + 4x - 5} = 1;$$
$$0,2^{x^2 + 4x - 5} = 0,2^0;$$
$$x^2 + 4x - 5 = 0;$$
По теореме Виета:
$$x_1 + x_2 = -4;$$
$$x_1 \cdot x_2 = -5;$$
$$x_1 = 1;$$
$$x_2 = -5$$.
3) $$2^{x + 3} - 2^{x+1} = 12;$$
$$2^x \cdot 2^3 - 2^x \cdot 2^1 = 12;$$
$$2^x (8 - 2) = 12;$$
$$2^x \cdot 6 = 12;$$
$$2^x = 2;$$
$$x = 1$$.
4) $$4 \cdot 2^{2x} - 5 \cdot 2^x + 1 = 0.$$.
$$4 \cdot (2^{x})^2 - 5 \cdot 2^x + 1 = 0;$$
Пусть $$t = 2^x$$, тогда $$4t^2 - 5t + 1 = 0$$.
$$D = (-5)^2 - 4 \cdot 4 \cdot 1 = 25 - 16 = 9;$$
$$t_1 = \frac{5 + 3}{8} = 1;$$
$$t_2 = \frac{5 - 3}{8} = \frac{1}{4}$$.
1) $$2^x = 1;$$
$$x = 0$$.
2) $$2^x = \frac{1}{4};$$
$$2^x = 2^{-2};$$
$$x = -2$$.
Ответ: 1) x = 2; 2) x = 1, x = -5; 3) x = 1; 4) x = 0, x = -2.