a) Здесь $$a_1 = 2, d = 4$$. Пусть $$x = a_n = a_1 + (n-1)d = 2 + (n-1)4 = 4n - 2$$.
$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2 + 4n - 2)}{2} = \frac{4n^2}{2} = 2n^2 = 450$$, $$n^2 = 225$$, $$n = 15$$.
Тогда $$x = 4n - 2 = 4 \cdot 15 - 2 = 60 - 2 = 58$$.
б) Здесь $$a_1 = 30, d = -3$$. Пусть $$x = a_n = a_1 + (n-1)d = 30 + (n-1)(-3) = 33 - 3n$$.
$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(30 + 33 - 3n)}{2} = \frac{n(63 - 3n)}{2} = 162$$, $$63n - 3n^2 = 324$$, $$3n^2 - 63n + 324 = 0$$, $$n^2 - 21n + 108 = 0$$.
$$D = 21^2 - 4 \cdot 108 = 441 - 432 = 9$$, $$n = \frac{21 \pm 3}{2}$$.
$$n_1 = \frac{24}{2} = 12$$, $$n_2 = \frac{18}{2} = 9$$.
Если $$n = 12$$, то $$x = 33 - 3 \cdot 12 = 33 - 36 = -3$$.
Если $$n = 9$$, то $$x = 33 - 3 \cdot 9 = 33 - 27 = 6$$.
Ответ: a) x = 58, б) x = -3 или x = 6.