a) Решим уравнение $$\frac{x^2 - 1}{2} - 11x = 11$$. Умножим обе части на 2:
$$x^2 - 1 - 22x = 22$$
$$x^2 - 22x - 23 = 0$$
Найдем дискриминант:
$$D = b^2 - 4ac = (-22)^2 - 4 \cdot 1 \cdot (-23) = 484 + 92 = 576$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{22 + \sqrt{576}}{2} = \frac{22 + 24}{2} = \frac{46}{2} = 23$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{22 - \sqrt{576}}{2} = \frac{22 - 24}{2} = \frac{-2}{2} = -1$$
Ответ: $$x_1 = 23$$, $$x_2 = -1$$
б) Решим уравнение $$\frac{x^2 + x}{2} = \frac{8x - 7}{3}$$. Умножим обе части на 6:
$$3(x^2 + x) = 2(8x - 7)$$
$$3x^2 + 3x = 16x - 14$$
$$3x^2 - 13x + 14 = 0$$
Найдем дискриминант:
$$D = b^2 - 4ac = (-13)^2 - 4 \cdot 3 \cdot 14 = 169 - 168 = 1$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{13 + \sqrt{1}}{6} = \frac{13 + 1}{6} = \frac{14}{6} = \frac{7}{3}$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{13 - \sqrt{1}}{6} = \frac{13 - 1}{6} = \frac{12}{6} = 2$$
Ответ: $$x_1 = \frac{7}{3}$$, $$x_2 = 2$$
в) Решим уравнение $$\frac{4x^2 - 1}{3} = x(10x - 9)$$. Умножим обе части на 3:
$$4x^2 - 1 = 3x(10x - 9)$$
$$4x^2 - 1 = 30x^2 - 27x$$
$$26x^2 - 27x + 1 = 0$$
Найдем дискриминант:
$$D = b^2 - 4ac = (-27)^2 - 4 \cdot 26 \cdot 1 = 729 - 104 = 625$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{27 + \sqrt{625}}{52} = \frac{27 + 25}{52} = \frac{52}{52} = 1$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{27 - \sqrt{625}}{52} = \frac{27 - 25}{52} = \frac{2}{52} = \frac{1}{26}$$
Ответ: $$x_1 = 1$$, $$x_2 = \frac{1}{26}$$
г) Решим уравнение $$\frac{3}{4}x^2 - \frac{2}{5}x = \frac{4}{5}x^2 + \frac{3}{4}$$. Умножим обе части на 20:
$$15x^2 - 8x = 16x^2 + 15$$
$$x^2 + 8x + 15 = 0$$
Найдем дискриминант:
$$D = b^2 - 4ac = (8)^2 - 4 \cdot 1 \cdot 15 = 64 - 60 = 4$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-8 + \sqrt{4}}{2} = \frac{-8 + 2}{2} = \frac{-6}{2} = -3$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-8 - \sqrt{4}}{2} = \frac{-8 - 2}{2} = \frac{-10}{2} = -5$$
Ответ: $$x_1 = -3$$, $$x_2 = -5$$