а) Решим уравнение:$$x^3-49x=0$$Вынесем x за скобки:$$x(x^2-49)=0$$Произведение равно нулю, когда один из множителей равен нулю:$$x=0$$ или $$x^2-49=0$$Решим уравнение $$x^2-49=0$$$$x^2=49$$$$x_1=7, x_2=-7$$Тогда корни уравнения: 0, 7, -7
б) Решим уравнение:
$$\frac{x^2+3}{4}-\frac{17-3x}{8}=2$$Приведем дроби к общему знаменателю 8:
$$\frac{2(x^2+3)}{8}-\frac{17-3x}{8}=\frac{16}{8}$$Умножим обе части уравнения на 8:
$$2(x^2+3)-(17-3x)=16$$Раскроем скобки:
$$2x^2+6-17+3x=16$$$$2x^2+3x-11-16=0$$$$2x^2+3x-27=0$$Решим квадратное уравнение.
Найдем дискриминант:$$D=b^2-4ac=3^2-4 \cdot 2 \cdot (-27)=9+216=225$$
$$x_1=\frac{-b+\sqrt{D}}{2a}=\frac{-3+\sqrt{225}}{2 \cdot 2}=\frac{-3+15}{4}=\frac{12}{4}=3$$$$x_2=\frac{-b-\sqrt{D}}{2a}=\frac{-3-\sqrt{225}}{2 \cdot 2}=\frac{-3-15}{4}=\frac{-18}{4}=-4.5
$$Ответ: а) -7; 0; 7 б) -4,5; 3