$$\frac{x-9}{\sqrt{x}+3} = \frac{(\sqrt{x})^2 - 3^2}{\sqrt{x}+3} = \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x}+3} = \sqrt{x} - 3$$
Ответ: $$\sqrt{x} - 3$$$$\frac{5+2\sqrt{5}}{\sqrt{5}} = \frac{5}{\sqrt{5}} + \frac{2\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}\cdot\sqrt{5}}{\sqrt{5}} + 2 = \sqrt{5} + 2$$
Ответ: $$\sqrt{5} + 2$$$$\frac{a-1}{a-2\sqrt{a}+1} = \frac{(\sqrt{a})^2 - 1^2}{(\sqrt{a} - 1)^2} = \frac{(\sqrt{a}-1)(\sqrt{a}+1)}{(\sqrt{a}-1)^2} = \frac{\sqrt{a}+1}{\sqrt{a}-1}$$
Ответ: $$\frac{\sqrt{a}+1}{\sqrt{a}-1}$$