Вопрос:

15.83 Сравните значения числовых выражений А и В: a) A = 1 3/3-5+3√3+5 ; B = √30; б) A = 2 4+ 2√5 - 4-2√5 ; B = √24; в) A = 3 2√6-3 + 2√6+3 ; B = √3; г) А = 1 2+3√2 - 2-3/2 ; B= √2.

Ответ:

a) $$A = \frac{1}{3\sqrt{3}-5} + \frac{1}{3\sqrt{3}+5} = \frac{3\sqrt{3}+5 + 3\sqrt{3}-5}{(3\sqrt{3}-5)(3\sqrt{3}+5)} = \frac{6\sqrt{3}}{(3\sqrt{3})^2 - 5^2} = \frac{6\sqrt{3}}{27-25} = \frac{6\sqrt{3}}{2} = 3\sqrt{3} = \sqrt{9 \cdot 3} = \sqrt{27}$$

$$B = \sqrt{30}$$

Так как $$27 < 30$$, то $$\sqrt{27} < \sqrt{30}$$, значит, $$A < B$$.

Ответ: A < B

б) $$A = \frac{2}{4+2\sqrt{5}} - \frac{2}{4-2\sqrt{5}} = \frac{2(4-2\sqrt{5}) - 2(4+2\sqrt{5})}{(4+2\sqrt{5})(4-2\sqrt{5})} = \frac{8 - 4\sqrt{5} - 8 - 4\sqrt{5}}{16 - 4 \cdot 5} = \frac{-8\sqrt{5}}{16 - 20} = \frac{-8\sqrt{5}}{-4} = 2\sqrt{5} = \sqrt{4 \cdot 5} = \sqrt{20}$$

$$B = \sqrt{24}$$

Так как $$20 < 24$$, то $$\sqrt{20} < \sqrt{24}$$, значит, $$A < B$$.

Ответ: A < B

в) $$A = \frac{3}{2\sqrt{6}-3} + \frac{3}{2\sqrt{6}+3} = \frac{3(2\sqrt{6}+3) + 3(2\sqrt{6}-3)}{(2\sqrt{6}-3)(2\sqrt{6}+3)} = \frac{6\sqrt{6} + 9 + 6\sqrt{6} - 9}{4 \cdot 6 - 9} = \frac{12\sqrt{6}}{24-9} = \frac{12\sqrt{6}}{15} = \frac{4\sqrt{6}}{5} = \sqrt{\frac{16 \cdot 6}{25}} = \sqrt{\frac{96}{25}} = \sqrt{3.84}$$

$$B = \sqrt{3}$$

Так как $$3.84 > 3$$, то $$\sqrt{3.84} > \sqrt{3}$$, значит, $$A > B$$.

Ответ: A > B

г) $$A = \frac{1}{2+3\sqrt{2}} - \frac{1}{2-3\sqrt{2}} = \frac{2-3\sqrt{2} - (2+3\sqrt{2})}{(2+3\sqrt{2})(2-3\sqrt{2})} = \frac{2-3\sqrt{2} - 2 - 3\sqrt{2}}{4 - 9 \cdot 2} = \frac{-6\sqrt{2}}{4 - 18} = \frac{-6\sqrt{2}}{-14} = \frac{3\sqrt{2}}{7} = \sqrt{\frac{9 \cdot 2}{49}} = \sqrt{\frac{18}{49}}$$

$$B = \sqrt{2}$$

Так как $$\frac{18}{49} < 2$$, то $$\sqrt{\frac{18}{49}} < \sqrt{2}$$, значит, $$A < B$$.

Ответ: A < B

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие