Вопрос:

12. Тип 10 № 11137 Найдите значение выражения $$\frac{x^2y - xy^5}{5(3y - x)} \cdot \frac{2(x-3y)}{x^4 - y^4}$$ при $$x = -\frac{1}{7}$$ и $$y = -14$$.

Смотреть решения всех заданий с листа

Ответ:

Для нахождения значения выражения, сначала упростим его:

$$\frac{x^2y - xy^5}{5(3y - x)} \cdot \frac{2(x-3y)}{x^4 - y^4} = \frac{xy(x - y^4)}{5(3y - x)} \cdot \frac{2(x-3y)}{(x^2 - y^2)(x^2 + y^2)} =$$

$$= \frac{xy(x - y^4)}{-5(x - 3y)} \cdot \frac{2(x-3y)}{(x - y)(x + y)(x^2 + y^2)} = \frac{2xy(x - y^4)}{-5(x - y)(x + y)(x^2 + y^2)} $$

Подставим значения $$x = -\frac{1}{7}$$ и $$y = -14$$:

$$\frac{2 \cdot (-\frac{1}{7}) \cdot (-14) (-\frac{1}{7} - (-14)^4)}{-5(-\frac{1}{7} - (-14))(-\frac{1}{7} + (-14))((-\frac{1}{7})^2 + (-14)^2)} =$$

$$= \frac{4(-\frac{1}{7} - 38416)}{-5(-\frac{1}{7} + 14)(-\frac{1}{7} - 14)(\frac{1}{49} + 196)} = \frac{4(-\frac{1}{7} - 38416)}{-5(\frac{-1 + 98}{7})(\frac{1 + 98}{7})(\frac{1 + 9604}{49})} =$$

$$= \frac{4(\frac{-1 - 268912}{7})}{-5 \cdot \frac{97}{7} \cdot \frac{99}{7} \cdot \frac{9605}{49}} = \frac{4 \cdot (-268913) \cdot 49 \cdot 7 \cdot 7}{-5 \cdot 97 \cdot 99 \cdot 9605 \cdot 7} = \frac{-4 \cdot 268913 \cdot 49 \cdot 7}{-5 \cdot 97 \cdot 99 \cdot 9605} =$$

$$= \frac{-36919388}{-46128525} = \frac{36919388}{46128525} = 0.800355 \approx 0.8$$

Ответ: 0.8
ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие