Вопрос:

3. Точки А и С лежат по разные стороны от прямой BD. Докажите, что если АВ || CD и AB = CD, то A ABD = A CDB.

Смотреть решения всех заданий с листа

Ответ:

3. Дано: точки А и С лежат по разные стороны от прямой BD, АВ || CD, AB = CD.

Доказать: ∆ABD = ∆CDB

Доказательство:

Рассмотрим треугольники ∆ABD и ∆CDB.

BD - общая сторона.

AB = CD (по условию).

∠ABD = ∠CDB как накрест лежащие углы при параллельных прямых АВ и CD и секущей BD.

Следовательно, ∆ABD = ∆CDB по двум сторонам и углу между ними.

Что и требовалось доказать.

Ответ: доказано, ∆ABD = ∆CDB

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие