Вопрос:

12. Треугольник ABC вписан в окружность с центром в точке O. Точки O и C лежат в одной полуплоскости относительно прямой AB. Найдите угол ACB, если угол AOB равен 173°. Ответ дайте в градусах.

Ответ:

Угол ACB - вписанный угол, опирающийся на дугу AB. Угол AOB - центральный угол, опирающийся на ту же дугу AB. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу. Следовательно, угол ACB = (1/2) * угол AOB = (1/2) * 173° = 86.5°. Ответ: 86.5
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие