Вопрос:

ТС-22. Различные преобразования выражений, содержащих степени 1. Упростите выражение: 1) a) (-a)²-a; 2) a) (x3)2x4; 3) a) (y³)2. (y2)³; 4) a) c10: (c2)5; б) -a2a5; 6) (x3 x5)4; 3. в) а² (-а)5; в) х³ (x3)3; г) (-а²) (-а)5; г) (xx)5; в) (y) (y-y2)2; в) (с² с): (c3c)2. б) (узу)³ (у³ у)²; б) (c³): (c³)6;

Смотреть решения всех заданий с листа

Ответ:

1. Упростите выражение:

1) a) $$(-a)^2 \cdot a = a^2 \cdot a = a^{2+1} = a^3$$

б) $$-a^2 \cdot a^5 = -a^{2+5} = -a^7$$

в) $$a^2 \cdot (-a)^5 = a^2 \cdot (-1)^5 \cdot a^5 = -a^{2+5} = -a^7$$

г) $$(-a^2) \cdot (-a)^5 = (-1) \cdot a^2 \cdot (-1)^5 \cdot a^5 = (-1)^6 \cdot a^{2+5} = 1 \cdot a^7 = a^7$$

2) a) $$(x^3)^2 \cdot x^4 = x^{3 \cdot 2} \cdot x^4 = x^6 \cdot x^4 = x^{6+4} = x^{10}$$

б) $$(x^3 \cdot x^5)^4 = (x^{3+5})^4 = (x^8)^4 = x^{8 \cdot 4} = x^{32}$$

в) $$x^3 \cdot (x^3)^3 = x^3 \cdot x^{3 \cdot 3} = x^3 \cdot x^9 = x^{3+9} = x^{12}$$

г) $$(x \cdot x^5)^6 = (x^{1+5})^6 = (x^6)^6 = x^{6 \cdot 6} = x^{36}$$

3) a) $$(y^3)^2 \cdot (y^2)^3 = y^{3 \cdot 2} \cdot y^{2 \cdot 3} = y^6 \cdot y^6 = y^{6+6} = y^{12}$$

б) $$(y^3y)^3 \cdot (y^3y)^2 = (y^{3+1})^3 \cdot (y^{3+1})^2 = (y^4)^3 \cdot (y^4)^2 = y^{4 \cdot 3} \cdot y^{4 \cdot 2} = y^{12} \cdot y^8 = y^{12+8} = y^{20}$$

в) $$(y^6)^2 \cdot (y^4 \cdot y^2)^2 = y^{6 \cdot 2} \cdot (y^{4+2})^2 = y^{12} \cdot (y^6)^2 = y^{12} \cdot y^{6 \cdot 2} = y^{12} \cdot y^{12} = y^{12+12} = y^{24}$$

4) a) $$c^{10} : (c^2)^5 = c^{10} : c^{2 \cdot 5} = c^{10} : c^{10} = c^{10-10} = c^0 = 1$$

б) $$(c^3)^7 : (c^3)^6 = c^{3 \cdot 7} : c^{3 \cdot 6} = c^{21} : c^{18} = c^{21-18} = c^3$$

в) $$(c^2 \cdot c)^3 : (c^3 \cdot c)^2 = (c^{2+1})^3 : (c^{3+1})^2 = (c^3)^3 : (c^4)^2 = c^{3 \cdot 3} : c^{4 \cdot 2} = c^9 : c^8 = c^{9-8} = c^1 = c$$

Ответ: см. выше

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие